Proposed Mineral Extraction Roeshot

Transport Statement

Proposed Mineral Extraction, Roeshot

Prepared by:

Transport Statement

David Tucker Associates

Forester House
Doctors Lane
Henley-in-Arden
Warwickshire
$18^{\text {th }}$ March 2016

B95 5AW
Tel: 01564793598
Fax: 01564793983
inmail@dtatransportation.co.uk
www.dtatransportation.co.uk

Prepared For:

D.K. Symes Associates

Appletree Farmhouse
39 Main Road
Middleton Cheney
Banbury
Oxon
OX17 2ND

© David Tucker Associates

No part of this publication may be reproduced by any means without the prior permission of David Tucker Associates

Table of Contents

Page

1.0 Introduction 1
2.0 Existing Conditions 3
2.1 Site Location and Local Highway Network 3
2.2 Right of Ways 5
2.3 Traffic Flows 6
2.4 Vehicle Speeds 7
2.3 Road Safety 7
3.0 Operational Impacts 10
3.1 Introduction 10
3.2 Traffic Generation - HGVs 11
3.3 Traffic Generation - Employees 12
3.4 Traffic Generation - Total 13
3.5 Traffic Impact 13
3.6 HGV Routing Implications 14
3.7 Operational Impact Conclusions 14
4.0 Site Access Proposals 15
4.1 Introduction 15
4.2 Access Junction 15
4.3 Internal Haul Road 17
4.4 Signing 17
5.0 Conclusions 18

Appendices

Development Proposals

A35 Automatic Traffic Count
Accident Records
Visibility Splays at A35 J unction

$1.0 \quad$ INTRODUCTI ON

1.1 David Tucker Associates (DTA) have been retained by D.K. Symes Associates to prepare a Transport Statement (TS) reviewing the transportation and highways implications of the proposed Mineral Workings and Processing plant on land to the east of Roeshot Belt near Hinton in Hampshire.
1.2 The site comprises of circa 80 hectares of enclosed agricultural land adjacent to Burton Common and to a former mineral working site. The area is currently accessed from a track which connects with the A35 Lyndhurst Road and Hintonwood Lane at an existing priority crossroad. The junction was originally constructed to provide access to the former mineral working site and is outside of any residential or built-up area. As such, it is proposed to retain this as the main access route to the proposed mineral workings site.
1.3 The development proposals, as illustrated in Appendix A, comprise of the following phased operations:

- Removal of topsoils;
- Minerals extraction of approx. 160,000 tonnes and on-site concrete batching;
- Restoration works to return the area back to land suitable for agricultural and nature conservation.
1.4 The first phase comprising of removal of the topsoil will not require any external vehicle movements as the top soils will be used on site to provide perimeter bunds to reduce visual and noise impacts. The only two phases of operations which will result in vehicle movements are thus the mineral extraction/concrete batching and the restoration works. Against this background, this report assesses the suitability of the adjacent highway network to accommodate the expected level and type of traffic generated by the proposed mineral workings. This analysis concludes that the existing highway infrastructure is adequate to cater for the expected generated traffic flows.
1.5 The report also considers the existing facilities for ensuring appropriate HGV routeing and concludes that no further works are required to enhance this.
1.6 Finally, this statement considers the development against the criteria set out in the National Planning Policy Framework (NPPF) which confirms at Para 32 that "Development should only be prevented or refused on transport grounds where the residual cumulative impacts of development are severe."
1.7 This TS therefore concludes that the proposed development will have no material impact on the safety or operation of the adjacent highway network.

2.0 EXISTING CONDITIONS

2.1 Site Location and Local Highway Network

2.1.1 The location of the site is illustrated on Figure 1.

Figure 1 - Site Location (approximate red line)
2.1.2 As can be seen above, access to the site is currently via an internal track which passes across the former mineral workings site (now agricultural fields). In the vicinity of the site, the track is unmade but is sufficiently wide to allow the movements of heavy good vehicles expected to visit the site and none of mature trees lining the track will need to be felled. Further east, the internal track has been surfaced from its junction with the A35 up to where it changes direction to the west. The track (referred to thereafter as the access track) provides access to adjacent agricultural land and a Pick Your Own Farm. At the A35, the access track is currently gated to restrict access during the opening times of the PYO farm but rights of access over this junction have been secured with the landowners for the duration of the mineral extraction works.
2.1.3 The access track joins the A35 Lyndhurst Road at a priority cross-roads which also links to Hintonwood Lane. The latter is a 5.0 m wide single lane of rural character, subject to a 40 mph speed limit, that provides access to a few residential properties and terminates at the Hinton Admiral rail station. The A35 priority junction includes the provision of a dedicated right turn lane to the access track, allowing traffic from the east to turn into the access safely and without impacting on the A35 traffic.
2.1.4 The A35 Lyndhurst Road forms part of the Trunk Road Network and is maintained by the Highways Agency (HA). The road links Honiton in Devon with Southampton and varies in width and standards throughout its length. To the west of the access track, the A35 is a 7.3 m wide single carriageway road subject to the mandatory speed limit of 60 mph .
2.1.5 Some 58 m west of the centreline of the access track, signs indicate entrance to Hinton village and that the mandatory speed through the village is reduced to 40 mph . This reduction in vehicle speed is emphasised by "Slow" road markings and red surfacing located on the eastbound carriageway west of the access track. At this point, the A35 also starts to widen locally to provide sufficient width for the dedicated right turning lane into the access track.
2.1.6 East of the junction with the access track, the road narrows back to a single carriageway with the inclusion of a metre wide central hatching. Some 210m east of the access track junction, the A35 connects with Station Road at a priority junction, which also includes a right turning lane facility.
2.1.7 In the vicinity of the access track, the A35 is bordered by grass verges on both sides although a narrow (approx. 0.3 m) footpath is provided within the verge on its southern side. The vertical and horizontal alignments of the A35 past the access track is good and allows forward visibility in line with the 40mph mandatory speed limit.
2.1.8 There is no lighting provided along the section of the A35 past the site and no bus stops.
2.2
2.2.1 An Automatic Traffic Count (ATC) has been commissioned for the week commencing Tuesday $3^{\text {rd }}$ September 2013 to provide vehicle speeds and volumes by vehicle class. The ATC was located on the A35 near the access track junction and the results of this are shown at Appendix B.
2.2.2 Figure $\mathbf{3}$ provides a summary of the daily recorded flows and demonstrates that with the exception of Sunday, there is no noticeable variation between the traffic volumes on the A35 each day. The flows presented thereafter in this TS are therefore taken as the weekday averages.

Figure 3 - Daily Totals (two-way)
2.2.3 The data also shows that the morning peak during the week is between 08:00 and 09:00 whilst the evening peaks are between 16:00 and 17:00 for the eastbound traffic and between 17:00 and 18:00 for the westbound traffic. To ensure a robust analysis, the higher flows in the corresponding evening peaks have been taken for each direction regardless of the time. The summary of the flows on the A35 during the morning and evening peak periods as well as the 12-hour (07:00 to 19:00) daily flows are presented in Table 1.

Table 1 - Surveyed Traffic Flows A35

	Eastbound	Westbound	Total
AM Peak	812	799	1,611
PM Peak	1056	825	1,881
12 Hour	9,484	7,908	17,392

2.2.4 The HGV content at present is around 2.4% in the eastbound direction which equates to approximately 1,350 movements per weekday and 1.5% in the westbound direction or 710 movements per weekday.

$2.3 \quad$ Vehicle Speeds

2.3.1 The above ATC also recorded vehicle speeds on the A35 past the existing junction with the access track. These are also given in Appendix B and summarised in Table 2 for the 5-day (weekday) average.

Table 2 - Surveyed Traffic Flows A35

(in mph)	Eastbound	Westbound
85% ile	50.2	50.2
Mean Speed	42.6	43.2

2.3.2 Despite the access track being located within the 40 mph zone, it is accepted that the 85\%ile vehicle speeds would be slightly greater given the close proximity of the junction to the road traffic signs advising the reduced speed limit; however the mean vehicle speeds in both directions are broadly consistent with the mandatory speed limit of 40mph.

$2.4 \quad$ Road Safety

2.4.1 Personal Injury Accident (PIA) records have been obtained from Hampshire Police for the most recent five year period between June 2008 and May 2013 for the A35 corridor 500 metres either side of the access track junction. This data is included in Appendix C and summarised overleaf.
2.4.2 There were eight PIAs which occurred within the study area, of which none resulted in fatal injuries, two resulted in serious injuries and the remaining six involved minor injuries.
2.4.3 As shown on Figure 4, only one "slight" accident occurred at the A35 Lyndhurst Road/ Hintonwood Lane junction. Of the remaining accidents, four of the "slight" PIAs occurred at the A35 Lyndhurst Road junction with Ringwood Road whilst the remaining PIAs were not in the vicinity of the access track junction with the A35.

Figure 4 - Location of PI As within study area
2.4.4 A summary of the causation factors associated with the eight accidents is provide in Table 3.

Table 3 - Summary of Accidents

Ref.	Date	Time	Location	Causation Factors
090082527 (Slight)	24.02 .09	$10: 40$	Lyndhurst Rd junction with Ringwood Rd	Inexperienced or learner driver Failed to look properly/sudden braking/following too close
090338413 (Slight)	01.08 .09	$14: 15$	Lyndhurst Rd junction with Ringwood Rd	Failed to judge other persons path or speed
090182918 (Serious)	28.04 .09	$18: 25$	Lyndhurst Rd junction with Hintonwood Lane	Travelling too fast for conditions/aggressive driving

Ref.	Date	Time	Location	Causation Factors
090194354 (Slight)	28.04 .09	$18: 35$	Lyndhurst Rd, 450m s.w from Hintonwood Lane	Sudden breaking Rain, sleet, snow or fog
110087263 (Slight)	24.02 .11	$14: 30$	Lyndhurst Rd outside Oak Tree Cottages	Poor turn or manoeuvre Failed to look properly
120339368 (Slight)	11.07 .12	$08: 30$	Lyndhurst Rd junction with Ringwood Rd	Failed to judge other persons path or speed Following too close
130167383 (serious)	09.05 .13	$07: 27$	Lyndhurst Rd outside Greenhill, Hinton	Impaired by alcohol
080560207 (Slight)	18.12 .08	$18: 50$	Lyndhurst Rd junction with Ringwood Rd	Failed to judge other persons path or speed Exceeding speed limit

2.4.5 From Table 3, it is clear that the primary cause of each of the accidents is as a result of driver error and cannot be attributed to defects associated with the local highway network. None of the accidents involved Heavy Good Vehicles.
2.4.6 On the basis of the information recorded above, it is considered that the local highway network does not suffer from any significant safety concerns that are likely to result in higher than average accident rates, and that the number and severity of the accidents in the study area is not judged to be in excess of that expected for the type of environment.

3.0 OPERATIONAL I MPACTS

$3.1 \quad$ Introduction

3.1.1 As detailed in paragraph 1.2 of this TS, the agricultural land adjacent to the proposed mineral workings site under consideration in this report is a former mineral workings site and the access with the A35 was constructed to serve the previous activities.
3.1.2 The development of the site will follow a similar pattern and will fall into two phases; the extraction of minerals followed by restoration by infilling. The anticipated life of the quarry is expected to be between 14 and 16 years.
3.1.3 It is expected that the site will be worked in a phased manner with an annual throughput of around 160,000 tonnes per year. It is a characteristic of the quarrying industry that production is linked directly to demand from the local market. The demand has reduced in the past few years but this is expected to improve in the foreseeable future to reach the above output and this figure has been used as the basis of the assessments. In addition to the extraction of material, there will be an on-site concrete batching plant, which will produce circa. 20,000 cubic metres of concrete per annum.
3.1.4 The second phase that is likely to generate traffic movements relates to the restoration works and this will vary throughout the life of the project. As recycling of material is also proposed, not all extracted material will be exported off-site but re-used for reclamation works.
3.1.5 To produce a robust assessment, it is assumed that movements generated by any on site treatment of material will coincide with movements from the operation phase, although clearly the former would start sometime after the latter.
3.1. \quad The opportunity to utilise the adjacent railway has been considered in principle, And this is discussed in Section 4.2 of the ES. The main physical constraint is the difference in level between the railway and the site, which at this stage suggests that it would be extremely difficult to construct a siding without major engineering difficulties and impacts locally. Furthermopre, the quarry will provide for local demand and rail use is only ever
economic for longer distance 100+m strategic distribution. he materials extracted from the site and any imported material will therefore be entirely by lorries.
3.1.7 There is an increasing incentive for operators to maximise HGV loads, whereby the same vehicle will arrive and leave laden. Whilst not all vehicles will be able to do so, from industry experience, it is likely that approximately one third would achieve this. Similarly, the use of articulated vehicles with larger capacities are increasingly used to further reduce the number of movements required. For the purpose of this TS and to ensure a robust assessment, it has been assumed that all HGVs engaged in the moving of extracted or infill material will carry a maximum of 20 tonnes.

$3.2 \quad$ Traffic Generation - HGVs

Phase 1 Production

3.2.1 On the basis of the forecast operation of the site it is expected that, at its peak, the site will generate around 200,000 tonnes of sand and gravel per annum, of which 40,000 tonnes will be used to generate 20,000 cubic metres of concrete, and the remaining 160,000 tonnes exported from the site for sale as aggregate Similarly, as detailed above, it is the intention to process inert wastes that arise locally to produce secondary aggregates and reclamation materials. In order to ensure a robust assessment, it has been assumed that all 200,000 tonnes of material will be exported off-site.
3.2.2 On this basis, the forecast peak traffic generation of the site is set out below:

Table 4 - Traffic generation of Phase 1 Production

Operation	Volume/ Tonnage	Working days	Vehicle Tonnage	Movements per day
Sand and Gravel	$160,000 \mathrm{t}$	250	$20 \mathrm{t} / \mathrm{veh}$	32 inbound and 32 outbound
Concrete Batching	20,000 cu.m	250	$7.5 c u . \mathrm{m} /$ veh	11 inbound and 11 outbound

3.2.3 In addition, cement and fuel deliveries are likely to generate between them 2 movements
per day. The peak traffic generation during the production phase is therefore predicted as 88 two-way movements per day.
3.2.4 A detailed breakdown of the traffic movements is also provided at Section 7.4 of the ES.

Phase 2 - Reclamation

3.2.5 Turning to the reclamation phase, some 80,000 tonnes per annum will be required. Given that on site processing is also proposed, it is anticipated that on average 100,000 tonnes will be brought to site with 20,000 tonnes being exported and the balance of 80,000 tonnes being used for reclamation. This generates the following:

Table 5 - Traffic generation of Phase 2 Reclamation

Operation	Volume/ Tonnage	Working days	Vehicle Tonnage	Movements per day
Input	$100,000 \mathrm{t}$	250	$20 t /$ veh	20 inbound and 20 outbound
Output	$20,000 \mathrm{t}$	250	$20 t /$ veh	4 inbound and 4 outbound

3.2.6 The peak traffic generation during the reclamation phase is therefore 48 two-way movements per day.

Total HGV Generation

3.2.7 As stated above, it is anticipated that approximately one third of all HGVs bringing material to site will be re-utilised to export material off-site. This would exclude vehicles used for concrete batching and of the 48 inbound HGVs per day estimated above $(24+20+4), 16$ would therefore also be used for outbound movements. The total daily HGV generation therefore will be 120 two-way movements per day (136-16).

3.3 Traffic Generation - Employees

3.3.1 It is expected that the site will employ around 10 full-time operatives who will work, on average, from 8am to 6 pm . As a worse case, it has been assumed that all of these will
arrive by car. In addition, an additional 10 car trips per day have been allowed for visits by management etc, spread throughout the 10-hour day. On this basis the total daily traffic generation is forecast to be 30 two-way car trips.

3.4 Traffic Generation - Total

3.4.1 On the basis of the above, Table $\mathbf{6}$ below sets out the forecast traffic generation of the proposed mineral extraction facility during the peak periods and over the day. For the HGVs, it has been assumed that 10% of the daily generation would coincide with each of the morning and peak hours.

Table 6 - Total Forecast Traffic Generation Comparison - Two Way Flows

	LGVs	HGVs	Total
AM Peak	1	12	13
PM Peak	11	12	23
12 Hour	30	120	150

$3.5 \quad$ Traffic Impact

3.5.1 The impact of the proposals on the local highway network has been estimated as the proportional change in traffic volumes based on current surveyed flows. In future years the traffic on the local network will be expected to grow and thus the proportional increase in traffic will decrease.
3.5.2 Table 7 below summarises the comparison between the existing and proposed traffic movements on the adjacent road during the peak phase.

Table 7 - Traffic Impact Comparison - Total two way flows

	Existing Flows	Dev. Generated	Change
AM Peak	1,611	13	$+0.8 \%$
PM Peak	1,881	23	$+1.2 \%$
12 Hour	17,392	150	$+0.9 \%$

3.5.3 It can be seen from the above that the proposed mineral extraction and reclamation will result in minimal daily traffic movements. The proportional increase in traffic is less than 1.2% and can hence be considered immaterial.
3.5.4 Section 2 above has highlighted that the A35 forms part of the Trunk Road and therefore is of sufficient standard to accommodate the current level and type of traffic. The level of additional traffic will have minimal impact on the operation of the road network and it is concluded that the proposed quarry will have no material impact on the safety or operation of the adjacent highway network.

3.6 HGV Routing Implications

3.6.1 The principal markets for the materials will be to the south west area of Hampshire from Lymington to Christchurch as well as the south east of Dorset, being mainly Bournemouth and Poole. The principal markets will therefore be served by either the A35 and/or the A338.
3.6.2 The site is very well located away from residential areas and as the mineral traffic will be directly onto the trunk road network, no specific traffic routing is considered necessary.

3.7 Operational Impact Conclusions

3.7.1 On the basis of the above, it is concluded that the proposed mineral extraction and land fill will not result in any adverse material impact on the safety or operation of adjacent highway network.
3.7.2 On this basis, there is no requirement for any off-site mitigation measures as a result of the proposals.

4.0 SITE ACCESS PROPOSALS

$4.1 \quad$ Introduction

4.1.1 Having considered the likely traffic generation forecasts for the site above, this section considers the access junction required to adequately serve the development from the A35.

4.2 Access Junction

4.2.1 In order to access the site, it is proposed that the existing junction with the A35 Lyndhurst Road and Hintonwood Lane be utilised. As stated in Section 2, this junction now serves the adjacent agricultural land and the PYO farm but was originally constructed to serve an earlier mineral operation.
[ST1] Geometric Requirements
4.2.2 The access track has been built to provide a 7.3 m wide road into the site. This will ensure adequate width for two HGVs moving in opposite directions without encroaching on one another and is in accordance with TD42/95.
4.2.3 Junction radius of 20 m with a minor taper on the north-east exit are also provided in accordance with the requirements of TD 42/95. The geometry of the ghost island marking are also in accordance with the guidance set out in TD 42/95 for a 40mph road.

Visibility Requirements

4.2.4 Visibility requirements for priority junctions with the Trunk Road Network are also given in TD 42/95. This sets out the requirements for visibility splays in terms of the ' x ' distance set back along the minor road and in terms of the ' y ' distance along the major road.
4.2.5 Paragraph 7.6c of TD42/95 states that "the ' x ' distance shall be desirably $9 \mathrm{~m}^{\prime}$. However, paragraph 7.8 states that "the ' x ' distance may be taken as a Relaxation from 9.0 m to

4.5m for lightly trafficked simple junctions".

4.2.6 The appropriate ' y ' distance to be provided is a function of the design speed of the major road. As detailed in Table 2 above, the measured $85^{\text {th }}$ ile vehicle speeds in both directions were 50.2 mph or 80.3 kph . This was measured during a dry weather and Technical Advice $22 / 81^{1}$ states that "whereas for speed limits the 85 percentile dry weather spot speed of cars is required, for improvement of alignments and major/minor junctions or accesses, and for new major/minor junctions or accesses on existing roads, the normal design methods are based on the 85 percentile wet weather journey speed of vehicles.". In accordance with paragraph 3.4 of TA 22/81, a reduction of 4 kph has been applied to the measured speeds to derive the wet weather vehicle speeds. This provides a design speed of 76.3 kph . A ' y ' distance of between 120 and 160 m is therefore appropriate.
4.2.7 Drawing 15178-01 attached in Appendix \mathbf{D} shows the visibility splays at both 4.5 m and 9.0 m set back and demonstrates that the visibility splays in both directions currently comply with the requirements of TD42/95. It is not therefore proposed to undertake any junction improvements as it is considered that the existing A35 junction adequately and safely will serve the quarry access.

$4.3 \quad$ Internal Haul Road

4.3.1 The internal haul road will be using the existing track within the red line area for the transportation of material to and from to the processing plant. As is standard for haul roads, the first 25 metres from the public highway needs to be surfaced. The haul road is already surfaced for much of its length and therefore no additional works are required in the proximity of the A35 junction.
4.3.2 This route will follow the southern edge of the reclaimed mineral working which allows the vehicle movements to be screened by the planting along the field boundary. At this point, the route will be unmade as existing. The road crosses the BOAT close to where

[^0]an oil pipeline is located and near the existing electricity pylon. Where the access road crosses the bridleway, the road will be surfaced for a distance of 10.0 metres either side of the bridleway. The road will have two 'speed bumps' (sleeping policemen) in order to ensure that the speed of vehicles is reduced to a slow and safe level.
4.3.3 In addition to the traffic calming measures, there will be clear signs to warn the lorry drivers of pedestrians and horse riders on the bridleway as well as signs on the bridleway warning users of the likely passage of lorries. The bridleway will be fenced from the surrounding fields and outside operating hours, there will be gates to ensure security to the works and access road.

$4.4 \quad$ Signing

4.4.1 In accordance with good practise it is proposed that advance warning signage be erected in the verges on the A35 and Hintonwood Lane. The precise details of this will be considered at the detailed design stage.

5.0 CONCLUSI ONS

5.3 This report has assessed the Transportation and Highways implications of the proposed mineral workings at Hinton.
5.4 This report has assessed the suitability of the adjacent highway network to accommodate the level and type of traffic expected to be generated by the proposed mineral workings.
5.5 This analysis concludes that the existing highway infrastructure is adequate to cater for existing traffic flows and that no further off-site improvement works are necessary as a result of the development.
5.6 The report has identified that the existing ghost island junction with the A35 fully complies with the standards from the Highways Agency and will satisfactorily cater for traffic generation from the proposed development. No improvements are therefore proposed to this junction.
5.7 This TA therefore concludes that the proposed development will have no material impact on the safety or operation of the adjacent highway network.

SJT/VB/15178-01a_TS_Final
$18^{\text {th }}$ March 2016

Appendix A

Appendix B

16719 Site	CHRISTCHURCH								
	Location	SEPTEMBER Direction	Start Date	End Date	Posted Speed Limit (PSL)	Total Vehicles	5 Day Ave.	7 Day Ave.	Average 85\%ile Speed
$\begin{aligned} & \text { Site No: } \\ & 16719001 \end{aligned}$	A35 Lyndhurst Road, Christchurch (Fence) SZ 1995994907	Channel: Northeastbound	Tue 03-Sep-13	Mon 09-Sep-13	60	77755	11338	11108	50.2
		Channel: Southwestbound	Tue 03-Sep-13	Mon 09-Sep-13		64111	9381	9159	50.2

16719		CHRISTCHURCH				
Site	Location	SEPTEMBER Direction	Start Date	End Date	Posted Speed Limit (PSL)	Mean Speed
$\begin{gathered} \text { Site No: } \\ 16719001 \end{gathered}$	A35 Lyndhurst Road, Christchurch (Fence) SZ 1995994907	Channel: Northeastbound	Tue 03-Sep-13	Mon 09-Sep-13	60	42.6
		Channel: Southwestbound	Tue 03-Sep-13	Mon 09-Sep-13		43.2

Traffic Limited 2 of 6

16719	CHRISTCHURCH		Site No: 16719001 Channel: Northeastbound			Location	A35 Lyndhurst Road, Christchurch (Fence)		
TIME PERIOD	$\begin{gathered} \text { Tue } \\ 03 / 09 / 13 \\ \hline \end{gathered}$	$\begin{gathered} \text { Wed } \\ 04 / 09 / 13 \\ \hline \end{gathered}$	$\begin{gathered} \text { Thu } \\ 05 / 09 / 13 \\ \hline \end{gathered}$	$\begin{gathered} \text { Fri } \\ 06 / 09 / 13 \\ \hline \end{gathered}$	$\begin{gathered} \text { Sat } \\ 07 / 09 / 13 \\ \hline \end{gathered}$	$\begin{gathered} \text { Sun } \\ 08 / 09 / 13 \\ \hline \end{gathered}$	$\begin{gathered} \text { Mon } \\ 09 / 09 / 13 \\ \hline \end{gathered}$	5-Day Av	$\begin{gathered} \text { 7-Day } \\ \text { Av } \\ \hline \end{gathered}$
Week Begin: 03-Sep-13									
00:00	30	29	31	34	85	63	35	32	44
01:00	8	18	6	22	44	34	17	14	21
02:00	14	17	20	18	37	33	17	17	22
03:00	9	8	11	8	8	8	11	9	9
04:00	27	23	31	23	15	21	24	26	23
05:00	126	110	131	98	54	84	94	112	100
06:00	252	281	247	278	353	137	283	268	262
07:00	781	743	793	744	485	282	731	758	651
08:00	749	820	756	840	555	423	824	798	710
09:00	590	609	594	591	666	501	596	596	592
10:00	679	641	664	624	649	653	608	643	645
11:00	682	656	654	660	829	793	660	662	705
12:00	780	777	765	757	1000	888	741	764	815
13:00	756	822	772	802	1002	909	781	787	835
14:00	773	761	763	763	1060	923	750	762	828
15:00	879	869	892	836	982	802	878	871	877
16:00	1031	1048	1048	1072	887	835	1079	1056	1000
17:00	1023	989	993	1027	702	679	1045	1015	923
18:00	806	760	812	758	614	612	723	772	726
19:00	458	529	462	534	390	358	539	504	467
20:00	375	377	373	371	325	281	351	369	350
21:00	255	262	266	280	287	222	275	268	264
22:00	166	174	170	161	145	178	150	164	163
23:00	81	69	81	63	59	111	59	71	75
12H,7-19	9529	9495	9506	9474	9431	8300	9416	9484	9307
16H,6-22	10869	10944	10854	10937	10786	9298	10864	10894	10650
18H, 6-24	11116	11187	11105	11161	10990	9587	11073	11128	10888
24H, 0-24	11330	11392	11335	11364	11233	9830	11271	11338	11108
Am	07:00	08:00	07:00	08:00	11:00	11:00	08:00	-	-
Peak	781	820	793	840	829	793	824	812	811
Pm	16:00	16:00	16:00	16:00	14:00	14:00	16:00	-	-
Peak	1031	1048	1048	1072	1060	923	1079	1056	1037

16719	CHRISTCHURCH		Site No: 16719001 Channel: Southwestbound			Location	A35 Lyndhurst Road, Christchurch (Fence)		
TIME PERIOD	$\begin{gathered} \text { Tue } \\ 03 / 09 / 13 \\ \hline \end{gathered}$	Wed 04/09/13	$\begin{gathered} \text { Thu } \\ 05 / 09 / 13 \end{gathered}$	$\begin{gathered} \text { Fri } \\ 06 / 09 / 13 \\ \hline \end{gathered}$	$\begin{gathered} \text { Sat } \\ 07 / 09 / 13 \\ \hline \end{gathered}$	$\begin{gathered} \text { Sun } \\ 08 / 09 / 13 \\ \hline \end{gathered}$	Mon 09/09/13	5-Day Av	7-Day Av
Week Begin: 03-Sep-13									
00:00	27	38	23	37	75	61	29	31	41
01:00	13	20	10	17	34	30	19	16	20
02:00	9	9	5	9	18	18	12	9	11
03:00	11	15	15	18	17	19	21	16	17
04:00	23	31	22	32	14	24	32	28	25
05:00	57	53	64	52	25	43	53	56	50
06:00	175	186	166	196	220	95	207	186	178
07:00	601	585	585	580	415	218	590	588	511
08:00	777	763	811	723	497	398	707	756	668
09:00	745	741	775	721	684	578	713	739	708
10:00	765	787	740	738	780	655	769	760	748
11:00	775	768	771	799	748	669	820	787	764
12:00	667	543	685	560	724	706	574	606	637
13:00	568	450	551	452	830	631	421	488	558
14:00	685	380	660	373	764	528	373	494	538
15:00	633	433	611	442	644	634	426	509	546
16:00	718	620	740	627	632	577	616	664	647
17:00	815	817	811	861	617	524	821	825	752
18:00	687	678	716	696	505	512	681	692	639
19:00	457	461	470	475	409	426	487	470	455
20:00	301	290	287	288	223	264	289	291	277
21:00	185	177	199	179	186	161	172	182	180
22:00	133	132	124	129	97	131	120	128	124
23:00	66	60	61	60	48	99	56	61	64
12H,7-19	8436	7565	8456	7572	7840	6630	7511	7908	7716
16H,6-22	9554	8679	9578	8710	8878	7576	8666	9037	8806
18H,6-24	9753	8871	9763	8899	9023	7806	8842	9226	8994
24H, $0-24$	9893	9037	9902	9064	9206	8001	9008	9381	9159
Am	08:00	10:00	08:00	11:00	10:00	11:00	11:00	-	-
Peak	777	787	811	799	780	669	820	799	778
Pm	17:00	17:00	17:00	17:00	13:00	12:00	17:00	-	-
Peak	815	817	811	861	830	706	821	825	809

Appendix C

Accidents between dates 01/06/2008 and $31 / 05 / 2013 \quad$ (60) months

Selection:

Selected using Build Query : ; Refined using Accidents within selected Polygons -RPU Statistics Request ("NS A35
LYNDHURST ROAD")
Selected Polygon:NS A35 LYNDHURST ROAD

Notes:

Accidents between dates 01/06/2008 and $\mathbf{3 1 / 0 5 / 2 0 1 3}$ (60) months

Selection:
Selected using Build Query : ; Refined using Accidents within selected Polygons -RPU Statistics Request ("NS A35
LYNDHURST ROAD")

090082527	24/02/2009	Time	1040	Vehicles	2		Casualties	2	Slight	
E:420602 N:	95259	First Road:	A 35	Road Type			Single carri		Unclassified	
Speed limit: 30	Junction Detail:	T \& Stag		Give way or controlled						
Crossing: Control	None		Facilities:	None with	50m			Road surface	Dry	
Daylight: no street lighting				Fine without high winds						
Special Conditions	at Site None						Carriageway	rds: None		
Place accident rep	ted: At sc	ene		DfT Special Projects:						

	Causation		
	Factor:	Participant:	Confidence:
1st:	Inexperienced or learner driver/rider	Vehicle 1	Very Likely
2nd:	Following too close	Vehicle 1	Possible
3rd:	Failed to look properly	Vehicle 1	Possible
4th:	Failed to judge other persons path or speed	Vehicle 1	Possible
5th:	Sudden braking	Vehicle 2	Possible

VEH 1 (CAR) TRAVELLING NORTH ALONG RINGWOOD ROAD AROUND RIGHT HAND BEND FAILED TO BRAKE IN TIME AND COLLIDED WITH REAR OF VEH 2 (CAR) TRAVELLING NORTH AROUND RIGHT HAND BEND ALONG RINGWOOD ROAD WHICH HAD STOPPED AT JUNCTION.
Occurred on A35 LYNDHURST ROAD AT JUNCTION WITH RINGWOOD ROAD, HINTON, HAMPSHIRE

Casualty Reference: 1	Vehicle: 2	Age:	35	Female	Driver/rider	Severity: Slight
Not a pupil Seatbelt Not Applicable	Cycle helmet:					
Casualty Reference: 2	Vehicle: 2	Age:	37	Female	Passenger	Severity: Slight
Not a pupil Seatbelt Not Applicable	Cycle helmet:					

Front seat

Accidents between dates 01/06/2008 and $\mathbf{3 1 / 0 5 / 2 0 1 3}$ (60) months

Selection:
Selected using Build Query : ; Refined using Accidents within selected Polygons -RPU Statistics Request ("NS A35 LYNDHURST ROAD")
$090338413 \quad 01 / 08 / 2009 \quad$ Time $1415 \quad$ Vehicles $2 \quad$ Casualties $1 \quad$ Slight

E:420538 N: $95267 \quad$ First Road: U
Speed limit: 40 Junction Detail: T \& Stag Jct
Crossing: Control None Facilities:
Daylight: no street lighting
Special Conditions at Site None
Place accident reported: Elsewhere

Notes:

Causation							
1st:	Factor:	Participant:	Confidence:				
2nd: to judge other persons path or speed		Vehicle 2	Possible				
3rd:							
4th:							
5th:							
6th:							

VEH 1 (CAR) STATIONARY ON RINGWOOD ROAD AT THE JUNCTION WITH A35 LYNDHURST ROAD WAITING TO CROSS THE A35 LYNDHURST ROAD TO CONTINUE SOUTH EAST ON RINGWOOD ROAD. VEH 2 (CAR) TRAVELLING BEHIND VEH 1, FAILS TO STOP AND COLLIDES WITH REAR OF VEH 1 Occurred on RINGWOOD ROAD AT THE JUNCTION WITH A35 LYNDHURST ROAD, HINTON, HAMPSHIRE

Accidents between dates 01/06/2008 and 31/05/2013 (60) months

Selection:
Selected using Build Query : ; Refined using Accidents within selected Polygons -RPU Statistics Request ("NS A35
LYNDHURST ROAD")

Causation	Participant:	Confidence:	
1st:	Travelling too fast for conditions	Vehicle 1	Very Likely
2nd:	Aggressive driving	Vehicle 1	Very Likely
3rd:	Exceeding speed limit	Vehicle 1	
4th:			
5th:			
6th:			

VEH 1 (CAR) TRAVELLING SOUTHWEST ON A35, LYNDHURST ROAD, LYNDHURST, EXCEEDING SPEED LIMIT APPROACHES JUNCTION WITH HINTONWOOD LANE. VEH 2 (CAR) PULLS UP TO JUNCTION TRAVELLING NORTHWEST ALONG HINTONWOOD LANE. VEH 2 SEES CLEAR ROAD AND BEGINS MANOUV
Occurred on A35, LYNDHURST ROAD, AT JUNCTION WITH HINTONWOOD LANE, CHRISTCHURCH, HAMPSHIRE

Accidents between dates 01/06/2008 and $\mathbf{3 1 / 0 5 / 2 0 1 3}$ (60) months

Selection:
Selected using Build Query : ; Refined using Accidents within selected Polygons -RPU Statistics Request ("NS A35
LYNDHURST ROAD")

090194354	28/04/2009	Time	1835	Vehicles	s	Casualties	6	Serious
E:419672 N:	94757	First Road:	A 35		Road Type	Single carri		
Speed limit: 60 Junction Detail: N								
Crossing: Control	None		Facilities:	None with	thin 50 m		Road surface	Wet/Damp
Daylight: no street lighting				Raining without high winds				
Special Conditions at Site None						Carriageway Hazards: None		
Place accident rep	orted: Else	where		DfT Special	al Projects			

Causation	Participant:	Confidence:				
1st:	Factor:	Sudden braking	Vehicle 1	$	$	Very Likely
:---						
2nd:						
3rd:						
Rain, sleet, snow, or fog						
4th:						

VEHICLE 3 (CAR) TRAVELLING NORTHEAST ALONG A35 LYNDHURST ROAD, IS FORCED TO STOP DUE TO TRAFFIC. VEHICLE 2 (CAR) BEHIND VEH 3 ALSO STOPS, BUT VEHICLE 1 (CAR) FAILS TO NOTICE AND COLLIDES INTO REAR OF VEH 2 SHUNTING IT INTO VEH 3.
Occurred on A35 LYNDHURST ROAD 450 METERS SOUTHWEST FROM HINTONWOOD LANE, HINTON, HAMPSHIRE

Accidents between dates 01/06/2008 and 31/05/2013 (60) months

Selection:

Selected using Build Query : ; Refined using Accidents within selected Polygons -RPU Statistics Request ("NS A35
LYNDHURST ROAD")

Vehicle Reference	2	Car		Stopping					
Vehicle movement from	m	SW to	NE		/ articulation		Leaving the main road		
On main carriageway	y No skidding, jack-knifing or overturning								
Location at impact		ot at, or	within		First impact	Back			Hit vehicle:
Hit object in road N	None				Off road:	None			
Did not leave carr								76	Male
Not hit and run			Breath		not contacted				

Not hit and run \quad Breath test \quad Driver not contacted
Left hand drive:
Casualty Reference: 4 Vehicle: 2 Age: 76 Male Driver/rider Severity: Slight

Not a pupil
Seatbelt Not Applicable
Cycle helmet:

Casualty Reference: 5 Vehicle: 2 Age: 73 Female Passenger Severity: Slight
Not a pupil
Seatbelt Not Applicable Cycle helmet:
Front seat

Left hand drive:

Casualty Reference: 6 Vehicle: 3 Age: 23 Female Driver/rider Severity: Slight
Not a pupil
Seatbelt Not Applicable Cycle helmet:

Accidents between dates 01/06/2008 and $\mathbf{3 1 / 0 5 / 2 0 1 3}$ (60) months

Selection:
Selected using Build Query : ; Refined using Accidents within selected Polygons -RPU Statistics Request ("NS A35
LYNDHURST ROAD")

110087263	24/02/2011	Time	1430	Vehicles	s 2	Casualties	3		Slight
E:420377 N:	95143	First Road:	A 35		Road Type	Single carriageway			
Speed limit: 40	Junction Detail:	Not withi	n 20 m of ju	unction					
Crossing: Control	None	Facilities:		None within 50m				Road surface	Dry
Daylight: no street lighting				Fine without high winds					
Special Conditions at Site None						Carriageway Hazards: None			
Place accident rep	ted: Else	where		DfT Special	al Projects				

Causation		Confidence:	
1st:	Pactor:	Poor turn or manoevre	Vehicle 1

VEH 1 (CAR) TRAVELLING SW ALONG LYNDHURST ROAD DECIDED TO TURN AROUND. IN THE PROCESS VEH 2 (CAR), ALSO TRAVELLING SW, STRUCK THE OFFSIDE OF VEH 1.
Occurred on A35 LYNDHURST ROAD OUTSIDE OAK TREE COTTAGE, NEW MILTON, HAMPSHIRE

Accidents between dates 01/06/2008 and 31/05/2013 (60) months

Selection:

Selected using Build Query : ; Refined using Accidents within selected Polygons -RPU Statistics Request ("NS A35
LYNDHURST ROAD")

Not hit and run
Breath test Driver not contacted
Left hand drive:

Accidents between dates 01/06/2008 and $\mathbf{3 1 / 0 5 / 2 0 1 3}$ (60) months

Selection:
Selected using Build Query : ; Refined using Accidents within selected Polygons -RPU Statistics Request ("NS A35 LYNDHURST ROAD")

120339368	11/07/2012	Time	0830	Vehicles	2	Casualties	1	Slight	
E:420602 N:	95261	First Road:	: A 35	Road Type		e Single carri		Unclassified	
Speed limit: 30	Junction Detail:	T \& Stag		Give way or controlled					
Crossing: Control	None		Facilities:	None with	50 m		Road surface	Dry	
Daylight				Fine without high winds					
Special Conditions	at Site None			Carriageway Hazards: None					
Place accident repo	rted: Elsew	where		DfT Special	roject				

Causation	Participant:	Confidence:	
1st:	Factor:	Failed to judge other persons path or speed	Vehicle 1

VEH 1 (CAR) TRAVELLING NW ALONG RINGWOOD ROAD AND COLLIDES WITH THE REAR OF VEH 2 (CAR) IN FRONT, MOVES OFF AND THEN STOPS AT JUNCTION.
Occurred on A35 LYNDHURST ROAD AT JUNCTION WITH RINGWOOD ROAD, HIGHCLIFFE, HAMPSHIRE

Accidents between dates 01/06/2008 and $\mathbf{3 1 / 0 5 / 2 0 1 3}$ (60) months

 Selection:Selected using Build Query : ; Refined using Accidents within selected Polygons -RPU Statistics Request ("NS A35
LYNDHURST ROAD")

	Causation	Conficicipant:	Confence:
1st:	Impaired by alcohol	Vehicle 1	Very Likely
2nd:			
3rd:			
4th:			
5th:			
6th:			

VEH 1 (P/CYCLE) TRAVELLING SW ALONG A35 LYNDHURST ROAD IN HATCHED AREA WITH INTOXICATED RIDER, RIDES INTO SIDE OF VEH 2 (CAR) TRAVELLING SW ALONG A35 LYNDHURST ROAD AND PAST VEH 1.
Occurred on A35 LYNDHURST ROAD OUTSIDE GREENHILL, HINTON, HAMPSHIRE

Accidents between dates 01/06/2008 and 31/05/2013 (60) months

Selection:
Selected using Build Query : ; Refined using Accidents within selected Polygons -RPU Statistics Request ("NS A35
LYNDHURST ROAD")

Causation		Confidence:	
1st:	Factor:	Failed to judge other persons path or speed	Vehicle 2

VEHICLE 1 (CAR) TRAVELLING NORTHEAST ALONG A35 LYNDHURST ROAD PASSING JUNCTION WITH RINGWOOD RD ON THE NEARSIDE WHEN VEHICLE 2 (CAR) PULLED OUT CAUSING VEH 1 TO COLLIDE INTO OFFSIDE OF VEH 2.
Occurred on A35 LYNDHURST ROAD AT JUNCTION WITH RINGWOOD ROAD, NEW MILTON, HAMPSHIRE

Accidents between dates 01/06/2008 and $\mathbf{3 1 / 0 5 / 2 0 1 3}$ (60) months

Selection:

Selected using Build Query : ; Refined using Accidents within selected Polygons -RPU Statistics Request ("NS A35
LYNDHURST ROAD")

Accidents involving:

	Fatal	Serious	Slight	Total
Motor vehicles only (excluding 2-wheels)	0	1	6	7
2-wheeled motor vehicles	0	0	0	0
Pedal cycles	0	1	0	1
Horses \& other	0	0	0	0
Total	0	2	6	8

	Fatal	Serious	Slight	Total
Vehicle driver	0	0	10	10
Passenger	0	1	5	6
Motorcycle rider	0	0	0	0
Cyclist	0	1	0	1
Pedestrian	0	0	0	0
Other	0	0	0	0
Total	0	2	15	17

Appendix D

[^0]: ${ }^{1}$ Design Manual for Roads and Bridges, Technical Advice (TA) 22/81 Vehicle speed measurement on all purpose roads, Volume 5, Section 1, Department for Transport (November 1981)

